Single Correct Answer Type

1.	There are two forces each	h of magnitude 10 units. Or	ne inclined at an angle of 3	0° and the other at an angle	
	of 135° to the positive din a) 1.59î and 12.07ĵ	rection of <i>x</i> —axis. The <i>x</i> a b) 10î and 10ĵ	nd <i>y</i> components of the res c) 1.59î	sultant are respectively. d) 15.9î and 12.07ĵ	
2.	· · ·	· ·	the angle between \vec{A} and \vec{B}	• •	
	a) 0°	b) 30°	c) 60°	d) 90°	
3.	If $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \times \vec{B} =$,	ej 00	uj 50	
5.	a) Perpendicular unit ved		b) Parallel unit vectors		
	c) Parallel		d) Perpendicular.		
4.	•	h which a car is driven rou	y 1	vithout skidding (where, g =	
1.	-		per tyres and the roadway i		
	a) 36.0 km h^{-1}	b) 18.0 km h^{-1}	c) 21.6 km h^{-1}	d) 14.4 km h^{-1}	
5.	,	,		ius <i>r</i> , to describe the circle is	
0.			its value, the correspondi		
	a) $v/4$	b) $v/2$	c) 2v	d) 4 <i>v</i>	
6.		5 1	hass <i>m</i> at the other end. Th	2	
-		ough the fixed end. What is		0 / · F	
	a) <i>m l</i>	b) 16 <i>m l</i>	c) 4 <i>m l</i>	d) 2 <i>m l</i>	
7.	-	,	The driver maintains a cor	,	
		on the overbridge, the norm		1	
	a) Increases	b) Decreases	c) Remains the same	d) Fluctuates	
8.	If \vec{A} and \vec{B} denote the sid	-	ts area is $\frac{1}{2}AB(A \text{ and } B \text{ are})$	the magnitude of \vec{A} and \vec{B}	
			2		
	respectively), the angle b	b) 60°	c) 45°	d) 120°	
9.	a) 30° The maximum and minin		,	,	
9.	velocity are in the ratio 5	-	whirling in a circle of radius		
	a) $\sqrt{98} m/s$	b) 7 <i>m/s</i>	c) $\sqrt{490} m/s$	d) $\sqrt{4.9}$	
10	- /		same but the radius of the	<i>y</i> ,,	
10.	force will be	the angular velocity is kept	same but the radius of the	path is halved, the new	
		b) <i>F</i> ²	c) $E/2$	d) <i>F</i> /4	
11			, ,	<i>,</i> ,	
11.	If \vec{A} , \vec{B} and \vec{C} are the unit vectors along the incident ray, reflected ray and outward normal to the reflecting				
	surface, then a) $\vec{B} = \vec{A} - \vec{C}$	$h \vec{R} = \vec{A} + (\vec{A} \vec{C})\vec{C}$	c) $\vec{B} = 2\vec{A} - \vec{C}$		
10					
12.		beed becomes <i>v</i> , whose val		e particle makes an angle α	
	a) <i>u</i> cos θ	b) $u \cos \theta \cos \alpha$	c) $u \cos \theta \sec \alpha$	d) $u \sec \theta \cos \alpha$	
13.	A bullet is fired horizonta	ally with a velocity of 80 m	s ⁻¹ . During the first second	1,	
	a) It falls 9.8 m	b) It falls ⁸⁰ / ₈₈ m	c) It does not fall at all	d) It falls 4.9 m	
14.	In a circus stuntman ride speed at highest point of		track of radius <i>R</i> in the ver	rtical plane. The minimum	
	a) $\sqrt{2gR}$	b) 2 <i>gR</i>	c) $\sqrt{3gR}$	d) \sqrt{gR}	
15	•	, .	• =	1 =	
13.	A particle is moving in a circular path with a constant speed v . If θ is the angular displacement, then starting from $\theta = 0^{\circ}$, the maximum and maximum changes in the momentum will occur, when value of θ is				
	respectively a) 45° and 90°	b) 90° and 180°	c) 180° and 360°	d) 90° and 270°	

16.	An object is projected at height reached will be in	an angle of 45° with the ho the ratio	rizontal. The horizontal ra	nge and the maximum	
	a) 1 : 2	b) 2 : 1	c) 1 : 4	d) 4 : 1	
17.	A weightless thread can bear tension upto 37 N. A. stone of mass 500 g is tied to it and revolved in a circular path of radius 4 m in a vertical plane. If $g = 10 \text{ ms}^{-2}$, then the maximum angular velocity of the stone will be				
	a) 2 rad s^{-1}	b) 4 rad s^{-1}	c) 8 rad s^{-1}	d) 16 rad s^{-1}	
18.	A1 kg stone at the end of	1 m long string is whirled N , when the stone is at ($g = 1$		ant speed of $4 m/sec$. The	
	a) Top of the circle	b) Bottom of the circle		d) None of the above	
19.	A body moving along a	•	with velocity v , has cen	tripetal acceleration <i>a</i> . If its	
	a) 4 <i>a</i>	b) 2 <i>a</i>	c) $\frac{a}{4}$	d) $\frac{a}{2}$	
	2	-	1	<u>L</u>	
20.	the end of 3 min?	-		will be the displacement at	
	a) 52 m	b) Zero	c) 16 m	d) 2√2 m	
21.		of vector \vec{A} have numerica 9. What is the numerical va		ly and that of $(\vec{A} + \vec{B})$ have	
	a) 2	b) 3	c) 4	d) 5	
22		splacement of a particle mo	,	,	
	•		• • •	after 2 <i>sec</i> from its start is	
	a) 8 rad/sec	b) 12 rad/sec	c) 24 rad/sec	d) 36 rad/sec	
23	, ,	l curve of radius 92 m with		5	
23.	possible coefficient of sta	tic friction between the tyr	es and the road is		
	a) 0.75	b) 0.60	c) 0.45	d) 0.30	
24.	have without skidding, if	s a radius of 80 m. Find the $\mu = 0.25$	maximum speed which a c	ar turning the bend may	
	a) 24 ms ⁻¹	b) 4 ms ⁻¹	c) 14 ms ⁻¹	d) 9.8 ms ⁻¹	
25.					
	Figure shows a body of mass m moving with a uniform speed v along a circle of radius r . The change in velocity in going from A to B is				
	a) $v\sqrt{2}$	b) $v/\sqrt{2}$	c) <i>v</i>	d) zero	
26.	If the sum of the two unit	vectors is also a unit vecto	or, then magnitude of their	difference is	
	a) √2	b) √ <u>3</u>	c) $\sqrt{4}$	d) √7	
27.		I from the same speed but i	,		
	horizontal ranges are equ 102 m. Then maximum h		of one is $\pi/3$ and the maxi	mum height reached by it is	
	a) 336	b) 224	c) 56	d) 34	
28.	magnitude of the angular	=	about the point of projecti	the horizontal. The on when the particle is at its	
	- ,	re g = acceleration due to		d)	
	a) Zero	b) $mv^3/(4\sqrt{2}g)$		d) $mv^2/2g$	
29.	A man can thrown a ston a) 200 m	e 100 m away. The maximu b) 100 m	im height to which he can t c) 50 m	hrow vertically is d) 25 m	

30.	the tension in the string	=		orm angular velocity. Let <i>T</i> be elocity is doubled, tension in	
	the string will be a) π rad s ⁻²	b) 2 π rad s ⁻²	a) $4 \pi \mathrm{rad} \mathrm{a}^{-2}$	d) 8 π rad s ⁻²	
31	-	-		h the same effort, he throws	
51.		rds. The maximum height a		in the same enorgine throws	
	a) 100 m	b) 80 m	c) 60 m	d) 50 <i>m</i>	
32.	A can filled with water	is revolved in a vertical of	radius 4 m and the water	does not fall down. The time	
	period for a revaluation	is about			
	a) 2 s	b) 4 s	c) 8 s	d) 10 s	
33.	A bob of mass 10 kg is attached to wire 0.3 m long. Its breaking stress is $4.8 \times 10^7 N/m^2$. The area of cross				
	section of the wire is $10^{-6}m^2$. The maximum angular velocity with which it can be rotated in a horizontal				
	circle	b) A wad loop	a) 2 mad /aaa	d) 1 mad laga	
24	a) 8 <i>rad/sec</i>	, , ,	c) 2 rad/sec	d) 1 <i>rad/sec</i> nany rotations will it make in	
54.		uniform angular accelerat		nany rotations will it make in	
	a) 10	b) 20	c) 40	d) 30	
35.	-	of length <i>L</i> is whirled in a v	,	,	
001	-	-		speed <i>u</i> . The magnitude of the	
		it reaches a position where	=		
		b) $\sqrt{2gL}$			
36.		ates about axis. It slows do	• -		
	retardation in rads ⁻² is		1 1	0	
	a) 200 <i>π</i>	b) 100	c) 400 π	d) None of these	
37.	If a_r and a_t represent racincular if	adial and tangential acceler	ations, the motion of a par	ticle will be uniformly	
	a) $a_r = 0$ and $a_t = 0$	b) $a_r = 0$ but $a_t \neq 0$	c) $a_r \neq 0$ but $a_t = 0$	d) $a_r \neq 0$ and $a_t \neq 0$	
38.	projectile is	d the maximum height of a	projectile are equal. The a	angle of projection of the	
	a) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$	b) $\theta = \tan^{-1}(4)$	c) $\theta = \tan^{-1}(2)$	d) $\theta = 45^{\circ}$	
39				vater just does not fall down.	
07.	The time period of revo				
	a) 1 <i>sec</i>	b) 10 sec	c) 8 <i>sec</i>	d) 4 <i>sec</i>	
40		height of 3400 m above the	e ground. If the angle subte	ended at a ground observation	
	point by the aircraft position 10 s apart is 30°, then the speed of the aircraft is				
	a) 19.63 ms ⁻¹	b) 1963 ms ⁻¹	c) 108 ms ⁻¹	d) 196.3 ms ⁻¹	
41.	Find the maximum velocity for skidding for a car moved on a circular track of radius 100 <i>m</i> . The				
		tween the road and tyre is			
10	a) 0.14 <i>m/s</i>	b) 140 <i>m/s</i>	c) 1.4 <i>km/s</i>	d) 14 <i>m/s</i>	
42.		circle of radius <i>R</i> with cor	istant speed v , if radius is o	louble then its centripetal	
	force to keep the same s	•	a) Quadmunlad	d) Un chan go d	
12	a) Doubled	b) Halved	c) Quadrupled	d) Unchanged) m. If the time of flight is 5 s,	
43.		ponent of the velocity of th	-	-	
	a) 40 ms ^{-1}	ponent of the velocity of th	b) 0 ms^{-1}	point of crajectory is	
	c) 9.8 ms ^{-1}		,	of projection of the projectile	
44.		consistently shoots its she			
	An artillery piece which consistently shoots its shells with the same muzzle speed has a maximum range <i>R</i> . To hit a target which is $\frac{R}{2}$ from the gun and on the same level, the elevation angle of the gun should be				
	a) 15°	b) 45°	c) 30°	d) 60°	
	uj 15	0) 10	cj 50	u) 00	

- 45. The string of a pendulum of length l is displaced through 90° from the vertical and released. Then the minimum strength of the string in order to withstand the tension as the pendulum passes through the mean position is
- a) mg
 b) 6 mg
 c) 3 mg
 d) 5 mg
 46. A man is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity ω. The tension in the string if *F*. If the length of string and angular velocity are doubled, the tension is string is now
 a) *F*b) *F*/2
 c) 4 *F*d) 8 *F*

47. A particle is projected from horizontal making an angle 60° with initial velocity 40ms⁻¹. The time taken by the particle to make angel 45° from horizontal, is
a) 15 s
b) 2.0 s
c) 20 s
d) 1.5 s

- 48. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 km h⁻¹. The centripetal force, isa) 250 Nb) 750 Nc) 1000 Nd) 1200 N
- 49. In the case of an oblique projectile, the velocity is perpendicular to accelerationa) Once onlyb) Twicec) Thriced) Four times
- 50. A large number of bullets are fired in all directions with same speed v. What is the maximum area on the ground on which these bullets will spread

a) $\pi \frac{v^2}{g}$	b) $\pi \frac{v^4}{g^2}$	c) $\pi^2 \frac{v^4}{g^2}$	d) $\pi^2 \frac{v^2}{g^2}$
a) 2 <i>mg</i>	b) <i>mg</i>	c) 3 <i>mg</i>	d) $\sqrt{3}mg$