Single Correct Answer Type

1.	Two particles of equal masses are revolving in circular paths of radii r_1 and r_2 respectively with the same
	speed. The ratio of their centripetal forces is

	1			
	a) $\frac{r_2}{r_1}$	b) $\sqrt{\frac{r_2}{r_1}}$	c) $\left(\frac{r_1}{r_2}\right)^2$	d) $\left(\frac{r_2}{r_1}\right)^2$
2.	A grass hopper finds that	he can jump a maximum h	orizontal distance of 1 m. V	Vith what speed can be
	travel along the path if he	e speeds a negligible time o	n the ground	•
	a) $9.8 \mathrm{ms}^{-1}$	b) 4.42 ms^{-1}	c) 2.21 ms^{-1}	d) 3.13 ms ⁻¹
3.	A particle is kept at rest a	at the top of a sphere of dia	meter 42 <i>m</i> . When disturbe	ed slightly, it slides down. At
	what height h' from the l	bottom, the particle will lea	ive the sphere	
	a) 14 m	b) 28 m	c) 35 m	d) 7 <i>m</i>
4.	In a bicycle the radius of	rear wheel is twice the rad	ius of front wheel. If r_f and	r_r are the radius, v_f and v_r
	are the speed of top most	points of wheel, then	,	
	a) $v_r = 2v_f$	b) $v_f = 2v_r$	c) $v_f = v_r$	d) $v_f > v_r$
5.	A car is moving in a circu	lar horizontal track of radi	us 10 <i>m</i> with a constant spe	eed of 10 <i>m</i> /sec. A plumb
	bob is suspended from th	e roof of the car by a light	rigid rod of length 1.00 m. T	The angle made by the rod
	with track is			
	a) Zero	b) 30°	c) 45°	d) 60°
6.	At the height 80 <i>m</i> , an ae	roplane is moving with 150) <i>m/s</i> . A bomb is dropped f	rom it so as to hit a target.
	At what distance from the	e target should be bomb be	e dropped (Given $g = 10 m$	/s ²)
	a) 605.3 <i>m</i>	b) 600 <i>m</i>	c) 80 m	d) 230 m
7.	When a ceiling fan is swit	tched off its angular velocit	y reduces to 50% while it r	nakes 36 rotations. How
	many more rotation will	it make before coming to re	est (Assume uniform angula	ar retardation)
	a) 18	b) 12	c) 36	d) 48
8.	A particle moves with con	nstant angular velocity in c	ircular path of certain radiu	is and is acted upon by a
	certain centripetal force	F. If the angular velocity is	doubled keeping radius the	e same, the new force will be
	a) 2 <i>F</i>	b) <i>F</i> ²	c) 4 <i>F</i>	d) <i>F</i> /2
9.	A body moving along a ci	rcular path of radius R with	h velocity <i>v</i> , has centripetal	acceleration <i>a</i> . If its
	velocity is made equal to	2v, then its centripetal acc	eleration is	a
	a) 4 <i>a</i>	b) 2a	c) $\frac{a}{4}$	d) $\frac{a}{2}$
10	The minimum velocity (i	n ms ^{-1}) with which a car d	4 river must traverse a flat ci	urve of radius of 150 m and
10.	coefficient of friction 0.6	to avoid skidding is		
	a) 60	b) 30	c) 15	d) 25
11.	A cart is moving horizont	ally along a straight line w	ith constant speed 30 ms ^{-1}	A projectile is to be fired
	from the moving cart in such a way that it will return to the cart has moved 80 m. At what speed (relative			
	to the cart) must the proj	ectile be fired? (Take $g =$	10 ms^{-2})	
	-) 10=1	h $d = \sqrt{2}$	401	d) None of the above
	a) 10 ms ⁻¹	b) $10\sqrt{8}$ ms ⁻¹	$\frac{c}{3}$ ms ⁻¹	2
12.	A ball thrown by a boy is	caught by another after 2 s	sec some distance away in t	the same level. If the angle
	of projection is 30°, the v	elocity of projection is		
	a) 19.6 <i>m/s</i>	b) 9.8 <i>m/s</i>	c) 14.7 <i>m/s</i>	d) None of these
13.	The maximum velocity (i	n ms^{-1}) with which a car c	lriver must traverse a flat c	urve of radius 150 <i>m</i> and
	coefficient of friction 0.6	to avoid skidding is		
	a) 60	b) 30	c) 15	d) 25
14.	A car is moving in a circu	lar horizontal track of radi	us 10m with a constant spe	ed of 10 ms^{-1} . The angle

	made by the rod with trac	k is			
	a) Zero	b) 30°	c) 45°	d) 60°	
15.	An object of mass 2 <i>m</i> is p	rojected with a speed of 10	00 ms^{-1} at angle $\theta = \sin^{-1}$	$\left(\frac{3}{5}\right)$ to the horizontal. At the	
	highest point, the object b	reaks into pieces of same r	nass <i>m</i> and the first one co	mes to rest. The distance	
	between the point of projection and the point of landing of the bigger piece (in metre) is (given, $g =$				
	10 IIIS^{-}	አ) 1200	a) 1440	4) 060	
16	On the centre of a friction	less table a small hole is m	c) 1440 ade through which a weigh	u) 700 otless string of length 21 is	
10.	inserted. On the two ends	of the string two halls of th	ne same mass <i>m</i> are attach	ed. Arrangement is made in	
	such a way that half of the	string is on the table top a	ind half is hanging below. T	'he ball on the table top is	
	made to move in a circular path with a constant speed v . What is the centripetal acceleration of the				
	moving ball		-		
	a) <i>mvl</i>	b) <i>g</i>	c) Zero	d) 2 <i>mvl</i>	
17.	A 2 kg stone at the end of	a string 1 <i>m</i> long is whirle	d in a vertical circle at a co	nstant speed. The speed of	
	the stone is $4 m/sec$. The	tension in the string will be	e 52 <i>N</i> , when the stone is		
	a) At the top of the circle		b) At the bottom of the cir	rcle	
10	c) Halfway down		d) None of the above		
18.	A body of mass $\sqrt{3}$ kg is su	ispended by a string from a	a rigid support. The body is	s pulled horizontally by a	
	10 rce F until the string match 10GeV	h 0 0 N 0 0 N	c) 9.8 N 19.6 N	d) 196 N 98 N	
19.	One end of a string of len	gth l is connected to a par	ticle of mass <i>m</i> and other	to a small neg on a smooth	
171	horizontal table. If the pa	article moves in a circle v	with speed v , the net force	e on the particle (directed	
	towards the centre) is		1 /	1 (
	a) T	b) $T = \frac{mv^2}{mv^2}$	c) $T \pm \frac{mv^2}{mv^2}$	d) zero	
0.0					
20.	A projectile is thrown in the value 147 ms^{-1} Then	he upward direction making	lg an angle of 60° with the	norizontal direction with	
	a) 25 s	b) 10.98 s	c) 5.49 s	d) 2745 s	
21.	A particle describes a hori	zontal circle in a conical fu	nnel whose inner surface i	s smooth with speed of	
	0.5 m/s. What is the height	nt of the plane of circle from	n vertex of the funnel		
	a) 0.25 <i>cm</i>	b) 2 <i>cm</i>	c) 4 <i>cm</i>	d) 2.5 <i>cm</i>	
22.	A projectile is projected w	ith a speed u making an a	ngle 2 $ heta$ with the horizontal	. What is the speed when	
	its direction of motion ma	kes an angle θ with the ho	rizontal		
	a) $(u\cos 2\theta)/2$	b) $u \cos \theta$	c) $u(2\cos\theta - \sec\theta)$	d) $u(\cos\theta - \sec\theta)$	
23.	For motion in a plane with	n constant acceleration a, in	nitial velocity \overline{v}_0 and final v	relocity \vec{v} after time t , we	
	have $\vec{x} = \vec{x} + \vec{x}$	24)	$(h) \stackrel{\rightarrow}{\rightarrow} \stackrel{\rightarrow}{\rightarrow} - t^2$		
	a) $\vec{v} \cdot (\vec{v} - at) = \vec{v}_0 \cdot (\vec{v}_0 + at)$	(,)	b) $V. V_0 = at^2$		
24	The average acceleration $v_0 t$	vector for a particle having	$u_{0}v_{0}v_{0} - a v_{0}v_{0}$	is	
	a) A constant vector of magnitude v^2/r				
	b) A vector of magnitude v^2/r directed normal to the plane of the given uniform circular motion				
	c) Equal to the instantane	ous acceleration vector at	the start of the motion		
	d) A null vector				
25.	An aeroplane is flying with a uniform speed of $100 m/s$ along a circular path of radius $100 m$. the angular				
	speed of the aeroplane wi	ll be			
0.1	a) 1 rad/sec	b) 2 rad/sec	c) 3 rad/sec	d) 4 rad/sec	
26.	An arrow is shot into air. I	ts range is 200 <i>m</i> and its ti	me of flight is $5s$. If $g = 10$	m/s^2 , then the horizontal	
	component of velocity of t a) $125 m/s$	ne arrow is b) $25 m/s$	c) $31.25 m/c$	d) $40 m/s$	
0.7	aj 12.5 <i>IIL/S</i>		C_{J} 51.25 m/s		

	where <i>PR</i> equals				
	$P \qquad R \qquad Q$				
	↓ ↓				
	6 N 4 N				
	a) (2/5) <i>R Q</i>	b) (3/5) <i>R Q</i>	c) (2/3)R Q	d) (1/2) <i>R Q</i>	
28.	Two particles A and B are	projected with same speed	d so that ratio of their maxin	mum heights reached is	
	3:1. If the speed of A is do	oubled without altering oth	er parameters, the ratio of I	horizontal ranges attained	
	by <i>A</i> and <i>B</i> is				
	a) 1:1	b) 2:1	c) 4:1	d) 3:2	
29.	A monkey can jump a max	kimum horizontal distance	of 20 m. Then the velocity of	of the monkey is	
	a) 10 ms^{-1}	b) 14 ms ⁻¹	c) 20 ms^{-1}	d) 24 ms ⁻¹	
30.	A body can throw a stone	up to a maximum height of	f 10 <i>m</i> . The maximum horizo	ontal distance that the boy	
	can throw the same stone	up to will be		5	
	a) $20\sqrt{2}m$	b) 10m	c) $10\sqrt{2}m$	d) 20 <i>m</i>	
31.	Given $\vec{P} \cdot \vec{O} = 0$ then $ \vec{P} $	$\times \vec{0}$ is	,	,	
-		h Zoro	റി 1		
~~				a) \sqrt{PQ}	
32.	An object is being weighe	d on a spring balance movi	ng around a curve of radius	$100 \text{ m at a speed } 7 \text{ ms}^{-1}$.	
	The object has a weight of	f 60 kg-wt. The reading reg	istered on the spring balan	ce would be	
~~	a) 60.075 kg-wt	b) 60.125 kg-wt	c) 60.175 kg-wt	d) 60.225 kg-wt	
33.	Two projectiles A and B a	re thrown with velocities <i>v</i>	$\frac{1}{2}$ and $\frac{1}{2}$ respectively. They have	ave the same range. If <i>B</i> is	
	thrown at an angle of 15° to the horizontal, a must have been thrown at an angle				
	a) $\sin^{-1}\left(\frac{1}{2}\right)$	h) $\sin^{-1} \begin{pmatrix} 1 \\ - \end{pmatrix}$	() $2 \sin^{-1} \left(\frac{1}{-} \right)$	d) $\frac{1}{-\sin^{-1}(\frac{1}{-1})}$	
	(16)	(4)	(4)	2^{311} (8)	
34.	An electric fan has blades	of length 30 cm as measur	ed from the axis of rotation	. If the fan is rotating at	
	1200 r. p. m.The accelerat	tion of a point on the tip of	the blade is about	2	
	a) 1600 <i>m</i> / sec ²	b) 4740 <i>m</i> / sec ²	c) 2370 m/\sec^2	d) 5055 m/\sec^2	
35.	If the angle of projection of	of a projectile is 30°, then h	ow many times the horizon	tal range is larger than the	
	maximum height?		. –	. –	
	a) 2	b) 3	c) 3√4	d) 4√3	
36.	A scooter is going round a	a circular road of radius 10	0 m at a speed of $10 m/s$. T	he angular speed of the	
	scooter will be				
	a) 0.01 <i>rad/s</i>	b) 0.1 <i>rad/s</i>	c) 1 rad/s	d) 10 <i>rad/s</i>	
37.	An aeroplane is flying hor	izontally with a velocity of	600 km/h and at a height o	if 1960 m. When it is	
	vertically above a point A	on the ground a bomb is re	eleased from it. The bomb s	trikes the ground at point	
	<i>B</i> . The distance <i>AB</i> is				
00	a) 1200 m	b) 0.33 km	c) 333.3 km \rightarrow \rightarrow	d) 3.33 km \rightarrow	
38	The vector which can give	e unit vector along <i>x</i> -axis w	$A = 2\hat{i} - 4\hat{j} + 7k, B = 7\hat{i}$	i + 2j - 5k and $C = -4i + 3k$	
	$7\hat{j} + 3\hat{k}$ is		_		
	a) 4î + 5ĵ + 5k	b) –5î – 5ĵ + 5k	c) $-4\hat{i} - 5\hat{j} - 5\hat{k}$	d) 4î – 5ĵ + 5k	
39.	Given that A and B are gro	eater than 1. The magnitud	e of $(\vec{A} \times \vec{B})$ can not be		
	a) equal to AB	b) less than <i>AB</i>	c) more than <i>AB</i>	d) equal to A/B	
40.	Given $\vec{R} = \vec{A} + \vec{B}$ and $R =$	A = B. The angle between	\vec{A} and \vec{B} is		
	a) 60°	b) 90°	c) 120°	d) 180°	
41.	body of mass 1 kg tied to one end of string is revolved in a horizontal circle of radius 0.1 m with a speed				
	of 3 <i>revolution/sec</i> , assuming the effect of gravity is negligible, then linear velocity, acceleration and				
	tension in the string will b	De			
	a) 1.88 <i>m/s</i> , 35.5 <i>m/s</i> ² , 35	5.5 N	b) 2.88 <i>m/s</i> , 45.5 <i>m/s</i> ² , 45	.5 N	
	c) 3.88 m/s, 55.5m/s ² , 55.5 N		d) None of these		

42.	A body of mass <i>m</i> is moving in a circle of radius <i>r</i> with a constant speed <i>v</i> . The force on the body is $\frac{mv^2}{r}$ and				
	is directed towards the centre. What is the work done by this force in moving the body over half the				
	circumference of the circl	le			
	a) $\frac{mv^2}{mv} \times \pi r$	b) Zero	c) $\frac{mv^2}{mv^2}$	d) $\frac{\pi r^2}{\pi r^2}$	
	r		r^2	mv^2	
43.	A particle describes a horizontal circle in a conical funnel whose inner surface is smooth with speed of				
	0.5 ms^{-1} . What is the height of the plane of circle from vertex of the funnel?				
	a) 0.25 cm	b) 2 cm	c) 4 cm	d) 2.5 cm	
44.	4. A stone of mass <i>m</i> is tied to a string and is moved in a vertical circle of radius <i>r</i> making <i>n</i> revolutions				
	<i>minute</i> . The total tension	i in the string when the stor	ne is at its lowest point is		
	a) <i>mg</i>		b) $m(g + \pi n r^2)$		
	c) $m(g + \pi nr)$		d) $m\{g + (\pi^2 n^2 r)/900\}$		
45.	The resultant of two vectors of magnitudes 2A and $\sqrt{2}A$ acting at an angle θ is $\sqrt{10}A$. The correct value of			$\sqrt{10}A$. The correct value of θ	
	is				
	a) 30°	b) 45°	c) 60°	d) 90°	
46.	A projectile fired with init	tial velocity <i>u</i> at some angle	e θ has a range <i>R</i> . If the init	ial velocity be doubled at	
	the same angle off projection, then the range will be				
	a) 2 <i>R</i>	b) <i>R</i> /2	c) <i>R</i>	d) 4 <i>R</i>	
47	A helicopter is flying hori	zontally at an altitude of 2	km with a speed of 100 ms	⁻¹ . A packet is dropped	
	from it. The horizontal distance between the point where the packet is dropped and the point where it hit				
	the ground is $(g = 10 \text{ ms})$	⁻²)			
	a) 2 km	b) 0.2 km	c) 20 km	d) 4 km	
48	A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal			ne. The horizontal	
	component of the velocity of the bullet when it reaches the maximum height is				
	a) <i>u</i>	b) 0	c) $\frac{\sqrt{3u}}{2}$	d) <i>u</i> /2	
49.	A body of mass 0.4 kg is whirled in a vertical circle making $2 rev/sec$. If the radius of the circle is $2 m$.			dius of the circle is 2 <i>m</i> ,	
	then tension in the string when the body is at the top of the circle, is				
	a) 41.56 <i>N</i>	b) 89.86 <i>N</i>	c) 109.86 <i>N</i>	d) 115.86 <i>N</i>	
50.	A stone is tied to one end	of a string 50 <i>cm</i> long is wi	hirled in a horizontal circle	with a constant speed. If	
	the stone makes 10 revolutions in 20 s, what is the magnitude of acceleration of the stone				
	a) 493 <i>cm/s</i> ²	b) 720 <i>cm/s</i> ²	c) 860 <i>cm/s</i> ²	d) 990 <i>cm/s</i> ²	