Single Correct Answer Type

```
1
```

(a)

Here $\vec{A} - \vec{OP} = 10$ units along *OP* $\vec{B} - (\vec{OQ}) = 10$ units along *OQ* $\therefore \ \angle XOP = 30^\circ$ and $\angle XOQ = 135^\circ$

Resolving \vec{A} and \vec{B} into two rectangular components we have $A \cos 30^\circ$ along OX and $A \sin 30^\circ$ along OY. $B \cos 45^\circ$ along OX' and $B \sin 45^\circ$ along OY'.

Resultant component force along X-axis. $(A \cos 30^\circ - B \sin 45)\hat{1}$ $=(10 \times \sqrt{3}/2 - 10 \times 1/\sqrt{2})\hat{i} = 1.59\hat{i}$ Resultant component force along Y-axis $= (A \sin 30^\circ + B \sin 45^\circ)\hat{1}$ $=(10 \times 1/2 + 10 \times 1/\sqrt{2})_{\hat{j}} = 12.07_{\hat{j}}$ 2 (c) $\vec{A} + \vec{B} = \vec{C}$ (given) So, it is given that \vec{C} is the resultant of \vec{A} and \vec{B} $\therefore \quad C^2 = A^2 + B^2 + 2AB \cos\theta$ $3^2 = 3 + 3 + 2 \times 3 \times \cos\theta$ $3=6\cos\theta$ or $\cos\theta = \frac{1}{2} \Rightarrow \theta 60^{\circ}$ 3 (a) $\vec{A} \cdot \vec{B} = 0 \Rightarrow \vec{A} \perp \vec{B}$ Now, $\vec{A} \times \vec{B} = \vec{1}$ or $AB \sin\theta = 1$ $AB \sin 90^\circ = 1$ or $AB = 1 \Rightarrow A = 1$ and B = 1So, \vec{A} and \vec{B} are perpendicular unit vectors. (c) 4 Here, $v_{\text{max}} = ?, r = 18 \text{ m}, g = 10 \text{ ms}^{-2}$ $\mu = 0.2$ $\frac{mv_{\max}^2}{r} = F = \mu R = \mu m g$ $v_{\rm max} = \sqrt{\mu r g} = \sqrt{0.2 \times 18 \times 10} = 6 \, {\rm m s^{-1}}$ $= 6 \times \frac{18}{5} \,\mathrm{km}\,\mathrm{h}^{-1} = 21.6\,\mathrm{km}\,\mathrm{h}^{-1}$ 5 **(b)** $v = \sqrt{5gR}$ When $R' = \frac{R}{4}$

$$v' = \sqrt{5gR'} = \sqrt{5gR/4} = \frac{1}{2}\sqrt{5gR} = \frac{1}{2}v$$
(b)

$$T \sin \theta = mr\omega^2 = m(l \sin \theta)\omega^2$$
or $T = ml\omega^2 = ml\left(2\pi \times \frac{2}{\pi}\right)^2 = 16ml$
(a)

$$R = mg\cos\theta - \frac{mv^2}{r}$$
Convex bridge

When θ decreases $\cos \theta$ increases *i.e.*, *R* increases

8. **(a)**

6

7

Area of parallelogram = $|A \times B|$ $AB \sin\theta = \frac{1}{2}AB$ $\therefore \sin\theta = \frac{1}{2}, \theta = 30^{\circ}$

9. **(a)**

In this problem it is assumed that particle although moving in a vertical loop but its speed remain constant

Tension at lowest point $T_{\text{max}} = \frac{mv^2}{r} + mg$ Tension at highest point $T_{\text{min}} = \frac{mv^2}{r} - mg$

$$\frac{T_{\max}}{T_{\min}} = \frac{\frac{mv^2}{r} + mg}{\frac{mv^2}{r} - mg} = \frac{5}{3}$$

By solving we get, $v = \sqrt{4gr} = \sqrt{4 \times 9.8 \times 2.5} = \sqrt{98} m/s$

10. **(c)**

 $F = m\omega^2 R : F \propto R$ (*m* and ω are constant) If radius of the path is halved, then force will also become half

11. **(d)**

Let \vec{A} , \vec{B} and \vec{C} be as shown in figure. Let θ be the angle of incidence, which is also equal to the angle of reflection. Resolving these vectors in rectangular components, we have

Now $\vec{A}.\vec{C} = 2\cos\theta \hat{j}$ or $\vec{B} = \vec{A}\cos\theta \hat{j}$ $\therefore \vec{B} = \vec{A} - 2(\vec{A}.\vec{C})\hat{j}$ or $\vec{B} = \vec{A} - 2(\vec{A}.\vec{C})\vec{C}$ (as $\hat{j} = \vec{C}$)

12. **(c)**

In projectile motion given angular projection, the horizontal component velocity remains unchanged. Hence

 $v \cos \alpha = u \cos \theta$ or $v = u \cos \theta \sec \alpha$

13. **(d)**

$$s = 0 \times 1 + \frac{1}{2} \times 9.8 \times 1 \times 1 = 4.9 \text{ m}$$

14. **(d)**

Minimum speed at the highest point of vertical circular path $v = \sqrt{gR}$

15. **(c)**

When $\theta = 180^\circ$, the particle will be at diametrically opposite point, where its velocity is opposite to the initial directions of motion. The change in momentum = mv - (-mv) = 2mv (maximum). When $\theta = 360^\circ$, the particle is at the initial position with momentum m. Change in momentum mv - mv = 0 (minimum)

16. **(d)**

 $R = 4H \cot \theta$, if $\theta = 45^{\circ}$ then $R = 4H \Rightarrow \frac{R}{H} = \frac{4}{1}$

17. **(b)**

Maximum tension in the thread is given by

$$T_{\max} = mg + \frac{mv^2}{r}$$

or $T_{\max} = mg + mrw^2$ (:: $v = r\omega$)
or $\omega^2 = \frac{T_{\max} - mg}{mr}$
Given, $T_{\max} = 37$ N, m = 500g = 0.5 kg, $g = mg^{-2}$,
 $r = 4m$
: $\omega^2 = \frac{37 - 0.5 \times 10}{0.5 \times 4} = \frac{37 - 5}{2}$
or $\omega^2 = 16$
or $\omega = 4$ rad s⁻¹

18. **(a)**

 $mg = 1 \times 10 = 10N, \frac{mv^2}{r} = \frac{1 \times (4)^2}{1} = 16$ Tension at the top of circle $= \frac{mv^2}{r} - mg = 6N$ Tension at the bottom of circle $= \frac{mv^2}{r} + mg = 26N$

19. **(a)**

Centripetal force $\frac{mv^2}{R} = ma$ or $a = \frac{v^2}{R}$ $\therefore \quad \frac{a_1}{a_2} = \frac{v_1^2}{v_2^2}$ Here, $v_1 = v, v_2 = 2v, \quad a_1 = a$ $\therefore \quad \frac{a}{a_2} = \frac{v^2}{(2v)^2} = \frac{1}{4}$ or $a_2 = 4a$

20.

(d) Displacement is distance from initial to final position In 40s cyclist completes =1 round : In 3 min(180 s) cyclist will complete = $4\frac{1}{2}$ round Displacement for 4 round is zero. Displacement for $\frac{l}{2}$ round = length of diagonal = $2\sqrt{2}$ m. A R $2\sqrt{2}$ m D21. (d) $B_x = 10 - 6 = 4$ and $B_y = 9 - 6 = 3$ so, $B = (B_x^2 + B_y^2)^{1/2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9}$ $=\sqrt{25}=5$ 22. (c) $\omega = \frac{d\theta}{dt} = \frac{d}{dt}(2t^3 + 0.5) = 6t^2$ At $t = 2 s, \omega = 6 \times (2)^2 = 24 rad/s$ 23. (a) Here, $r = 92 \text{ m}, v = 26 \text{ ms}^{-1}, \mu = ?$ As $\frac{mv^2}{r} = F = \mu R = \mu mg$ $\mu = \frac{v^2}{rg} = \frac{26 \times 26}{92 \times 9.8} = 0.75$ 24. (c) $v = \sqrt{\mu rg} = \sqrt{0.25 \times 80 \times 9.8} = 14 \text{ ms}^{-1}$ 25. (a) $\left|\overrightarrow{\Delta v}\right| = 2\nu\sin(\theta/2) = 2\nu\sin\left(\frac{90}{2}\right) = 2\nu\sin45 = \nu\sqrt{2}$ 26. (b) Let $\widehat{A} + \widehat{B} = \widehat{R}$ then using parallelogram law of vectors we have $1 = (1^2 + 1^2 + 2.1.1 \cos \theta)^{1/2}$ or $1 = 2(1 + \cos\theta)$ or $\frac{1}{2} - 1 = \cos\theta$ or $\cos\theta = -\frac{1}{2} = \cos 120^{\circ}$ or $\theta = 120^{\circ}$ $\therefore |\widehat{A} - \widehat{B}| = |\widehat{A} + (-\widehat{B})|.$ Now the angle between \widehat{A} and $-\widehat{B}$ is 60° The resultant of $|\widehat{A} + (-\widehat{B})|$ $(1^{2} + 1^{2} + 2 \times 1 \times 1 \times \cos 60^{\circ})^{1/2}$ $=\sqrt{3}$ 27. (d)

We know that if two stones have same horizontal range, then this implies that both are projected at θ

and 90° - 0.
Given,
$$\theta = \frac{\pi}{3} = 60^{\circ}$$

 $\therefore 90^{\circ} - \theta = 90^{\circ} - 60^{\circ} = 30^{\circ}$
For first stone,
Maximum height $= 102 = \frac{u^{2} \sin^{2} 60^{\circ}}{2g}$
For second stone,
Maximum height, $h = \frac{u^{2} \sin^{2} 30^{\circ}}{2g}$
 $\therefore \frac{h}{102} = \frac{\sin^{2} 30^{\circ}}{\sin^{2} 60^{\circ}} = \frac{(1/2)^{2}}{(\sqrt{3}/2)^{2}}$
or $h = 102 \times \frac{1/4}{3/4} = 34$ m
(b)
 $\vec{L} = \vec{r} \times m\vec{v} = H \ mvcos \ \theta = \frac{v \sin^{2} \theta}{2g} \ mv \cos \theta = \frac{mv^{3}}{4\sqrt{2}g}$
(c)
 $\frac{v^{2}}{g} = 100 \ or \ v^{2} = 100 \ g$
 $h_{max} = \frac{v^{2}}{2g} = \frac{100g}{2g} = 50 \text{m}$
(b)
 $\omega_{1} = 2\pi r = 2\pi \times 20, \omega_{2} = 0, t = 20a, \alpha = ?$
As $\omega_{2} = \omega_{1} + \alpha t$
 $\therefore \alpha = \frac{\omega^{2} - \omega_{1}}{t} = \frac{40\pi - \theta}{20} = 2\pi \ rad \ s^{-2}$
(d)
Maximum height $= \frac{u^{2}}{2g} = \frac{100}{2} = 50 \ m$
(b)
When a body is revolving in circular motion it is acted upon by a centripetal force directed towards the center. Water will not fall if weight is balanced by centripetal force. Therefore

28.

29.

30.

31.

32.

$$mg = \frac{mv^2}{r}$$

$$mg = rg \dots (i)$$
Circumference of a circle is $2\pi r$.
Time of revoluation $= \frac{2\pi r}{v}$
Putting the value of v from Eq. (i), we get

$$T = \frac{2\pi r}{\sqrt{gr}} = 2\pi \sqrt{\frac{r}{g}}$$

Given,
$$r = 4$$
 m, $g = 9.8 \frac{m^2}{s}$
 $\therefore T = 2\pi \sqrt{\frac{4}{9.8}}$
 $\Rightarrow T = \frac{4\pi}{\sqrt{9.8}} = 4s$
33. (b)
Centripetal force = breaking force
 $\Rightarrow m\omega^2 r = breaking stress × cross sectional area$
 $\Rightarrow m\omega^2 r = p × A \Rightarrow \omega = \sqrt{\frac{p × A}{mr}} = \sqrt{\frac{4.8 \times 10^7 \times 10^{-6}}{10 \times 0.3}}$
 $\therefore \omega = 4 rad/sec$
34. (d)
 $\theta = 2\pi n = \omega_0 t + \frac{1}{2}\alpha t^2$
 $2\pi \times 10 = \frac{1}{2}\alpha 4^2$ or $\alpha = \frac{40\pi}{16}$
Let it make N rotations in the first 8 s
Then, $2\pi N = \frac{1}{2}\alpha 8^2$
or $N = \frac{1}{2\pi} \times \frac{64}{2} \times \frac{40\pi}{16} = 40$
 \therefore The required number of rotations
 $= 40 - 10 = 30$
35. (d)
 $\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mgL$
 $\Rightarrow v = \sqrt{u^2 - 2gL}$
 $|\vec{v} - \vec{u}| = \sqrt{u^2 + v^2} = \sqrt{u^2 + u^2 - 2gL} = \sqrt{2(u^2 - gL)}$
36. (a)
Given, $\omega_1 = 2\pi \times 400$ rad s⁻¹
 $\omega_2 = 2\pi \times 200$ rad s⁻¹
 $\therefore \alpha = \frac{2\pi(400 - 200)}{2} = 200\pi$ rad s⁻²

37. **(c)**

In uniform circular motion tangential acceleration remains zero but magnitude of radial acceleration remains constant.

38. **(b)**

Horizontal range

$$R = \frac{u^{2} \sin 2\theta}{g} \qquad \dots(i)$$
Maximum height

$$H = \frac{u^{2} \sin^{2} \theta}{2g} \qquad \dots(ii)$$
Here (i)=(ii)

$$\frac{u^{2} \sin 2\theta}{g} = \frac{u^{2} \sin^{2} \theta}{2g}$$

$$2 \cos \theta = \frac{\sin \theta}{2}$$

$$\theta = \tan^{-1}(4)$$

39. **(d)**

For critical condition at the highest point $\omega = \sqrt{g/R}$

$$\Rightarrow T = \frac{2\pi}{\omega} = 2\pi\sqrt{R/g} = 2 \times 3.14\sqrt{4/9.8} = 4 \sec(1)$$

40. **(d)**

$$\tan \theta = \frac{L}{A}$$
$$\tan 30^\circ = \frac{10v}{3400}$$
$$v = \frac{340}{\sqrt{3}} = 196.3 \text{ m/s}$$

$$v_{\rm max} = \sqrt{\mu rg} = \sqrt{0.2 \times 100 \times 9.8} = 14m/s$$

42. **(b)**

 $F = \frac{mv^2}{r}$. For same mass and same speed if radius is doubled then force should be halved (a)

$$R = \frac{v^2 \sin 2\theta}{g} = 200, T = \frac{2v \sin \theta}{g} = 5$$

Dividing, $\frac{v^2 \times 2 \sin \theta \cos \theta}{g} \times \frac{g}{2v \sin \theta} = \frac{200}{5} = 40$
or $v \cos \theta = 40 \text{ms}^{-1}$

It may be noted here that the horizontal component of the velocity of projection remains the same during the flight of the projectile

44. **(a)**

$$R_{\max} = R = \frac{u^2}{g}$$

$$\Rightarrow u^2 = Rg$$

Now, as range $= \frac{u^2 \sin 2\theta}{g}$
then $\frac{R}{2} = \frac{Rg \sin 2\theta}{g}$
 $\Rightarrow \sin 2\theta = \frac{1}{2} = \sin 30^\circ \Rightarrow \theta = 15^\circ$

45. **(c)**

Velocity at the lowest point, $v = \sqrt{2gl}$ At the lowest point, the tension in the string

$$T = mg + \frac{mv^2}{l} = mg + \frac{m}{l}(2gl) = 3mg$$

46. **(d)**

47.

Tension is string = centrifugal force In first case, $F = m r \omega^2$ In second case, $F' = m(2r)(2\omega)^2 = 8mr \omega^2 = 8 F$ (d) At 45°, $v_x = v_y$ or $u_x = u_y - gt$ $\therefore t = \frac{u_y - u_x}{g}$ $= \frac{40(\sin 60^\circ - \sin 30^\circ)}{9.8} = 1.5 s$

48. **(c)**
$$F = \frac{mv^2}{r} = \frac{500 \times (10)^2}{50} = 1000$$
N

49. **(a)**

At the highest point of trajectory, the velocity becomes horizontal. So, it is perpendicular to acceleration (which is directed vertically downwards)

50. **(b)**

Area in which bullet will spread =
$$\pi r^2$$

For maximum area, $r = R_{\text{max}} = \frac{v^2}{g}$ [When $\theta = 45^\circ$]
Maximum area $\pi R_{\text{max}}^2 = \pi \left(\frac{v^2}{g}\right)^2 = \frac{\pi v^4}{g^2}$